Title: | Nonlinear Mixed Effects Models in Population PK/PD, Plot Functions |
---|---|
Description: | Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the 'rxode2' package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for 'ggplot2' plotting methods for 'nlmixr2' objects. |
Authors: | Matthew Fidler [aut, cre] , Bill Denney [ctb] , Wenping Wang [aut], Vipul Mann [aut] |
Maintainer: | Matthew Fidler <[email protected]> |
License: | GPL (>= 3) |
Version: | 3.0.0 |
Built: | 2024-11-17 05:57:33 UTC |
Source: | https://github.com/nlmixr2/nlmixr2plot |
Plot a nlmixr2 augPred object
## S3 method for class 'nlmixr2AugPred' plot(x, y, ...)
## S3 method for class 'nlmixr2AugPred' plot(x, y, ...)
x |
augPred object |
y |
ignored, used to mach plot generic |
... |
Other arguments (ignored) |
Nothing called for side effects
library(nlmixr2est) ## The basic model consiss of an ini block that has initial estimates one.compartment <- function() { ini({ tka <- 0.45 # Log Ka tcl <- 1 # Log Cl tv <- 3.45 # Log V eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) # and a model block with the error sppecification and model specification model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2est::nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0)) # augPred shows more points for the fit: a <- nlmixr2est::augPred(fit) # you can plot it with plot(augPred object) plot(a)
library(nlmixr2est) ## The basic model consiss of an ini block that has initial estimates one.compartment <- function() { ini({ tka <- 0.45 # Log Ka tcl <- 1 # Log Cl tv <- 3.45 # Log V eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) # and a model block with the error sppecification and model specification model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2est::nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0)) # augPred shows more points for the fit: a <- nlmixr2est::augPred(fit) # you can plot it with plot(augPred object) plot(a)
Plot some standard goodness of fit plots for the focei fitted object
## S3 method for class 'nlmixr2FitData' plot(x, ...)
## S3 method for class 'nlmixr2FitData' plot(x, ...)
x |
a focei fit object |
... |
additional arguments (currently ignored) |
An nlmixr2PlotList
object (a list of ggplot2 objects with easier
plotting for all of them at the same time)
Wenping Wang & Matthew Fidler
library(nlmixr2est) one.compartment <- function() { ini({ tka <- 0.45 tcl <- 1 tv <- 3.45 eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0, nBurn = 10, nEm = 20)) # This shows many goodness of fit plots plot(fit)
library(nlmixr2est) one.compartment <- function() { ini({ tka <- 0.45 tcl <- 1 tv <- 3.45 eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0, nBurn = 10, nEm = 20)) # This shows many goodness of fit plots plot(fit)
Produce trace-plot for fit if applicable
traceplot(x, ...) ## S3 method for class 'nlmixr2FitCore' traceplot(x, ...)
traceplot(x, ...) ## S3 method for class 'nlmixr2FitCore' traceplot(x, ...)
x |
fit object |
... |
other parameters |
Fit traceplot or nothing.
Rik Schoemaker, Wenping Wang & Matthew L. Fidler
library(nlmixr2est) ## The basic model consiss of an ini block that has initial estimates one.compartment <- function() { ini({ tka <- 0.45 # Log Ka tcl <- 1 # Log Cl tv <- 3.45 # Log V eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) # and a model block with the error sppecification and model specification model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0)) # This shows the traceplot of the fit (useful for saem) traceplot(fit)
library(nlmixr2est) ## The basic model consiss of an ini block that has initial estimates one.compartment <- function() { ini({ tka <- 0.45 # Log Ka tcl <- 1 # Log Cl tv <- 3.45 # Log V eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) # and a model block with the error sppecification and model specification model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka * depot d/dt(center) = ka * depot - cl / v * center cp = center / v cp ~ add(add.sd) }) } ## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0)) # This shows the traceplot of the fit (useful for saem) traceplot(fit)
VPC based on ui model
vpcPlot( fit, data = NULL, n = 300, bins = "jenks", n_bins = "auto", bin_mid = "mean", show = NULL, stratify = NULL, pred_corr = FALSE, pred_corr_lower_bnd = 0, pi = c(0.05, 0.95), ci = c(0.05, 0.95), uloq = fit$dataUloq, lloq = fit$dataLloq, log_y = FALSE, log_y_min = 0.001, xlab = NULL, ylab = NULL, title = NULL, smooth = TRUE, vpc_theme = NULL, facet = "wrap", scales = "fixed", labeller = NULL, vpcdb = FALSE, verbose = FALSE, ..., seed = 1009, idv = "time", cens = FALSE ) vpcPlotTad(..., idv = "tad") vpcCensTad(..., cens = TRUE, idv = "tad") vpcCens(..., cens = TRUE, idv = "time")
vpcPlot( fit, data = NULL, n = 300, bins = "jenks", n_bins = "auto", bin_mid = "mean", show = NULL, stratify = NULL, pred_corr = FALSE, pred_corr_lower_bnd = 0, pi = c(0.05, 0.95), ci = c(0.05, 0.95), uloq = fit$dataUloq, lloq = fit$dataLloq, log_y = FALSE, log_y_min = 0.001, xlab = NULL, ylab = NULL, title = NULL, smooth = TRUE, vpc_theme = NULL, facet = "wrap", scales = "fixed", labeller = NULL, vpcdb = FALSE, verbose = FALSE, ..., seed = 1009, idv = "time", cens = FALSE ) vpcPlotTad(..., idv = "tad") vpcCensTad(..., cens = TRUE, idv = "tad") vpcCens(..., cens = TRUE, idv = "time")
fit |
nlmixr2 fit object |
data |
this is the data to use to augment the VPC fit. By
default is the fitted data, (can be retrieved by
|
n |
Number of VPC simulations |
bins |
either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators. |
n_bins |
when using the "auto" binning method, what number of bins to aim for |
bin_mid |
either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries. |
show |
what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci) |
stratify |
character vector of stratification variables. Only 1 or 2 stratification variables can be supplied. |
pred_corr |
perform prediction-correction? |
pred_corr_lower_bnd |
lower bound for the prediction-correction |
pi |
simulated prediction interval to plot. Default is c(0.05, 0.95), |
ci |
confidence interval to plot. Default is (0.05, 0.95) |
uloq |
Number or NULL indicating upper limit of quantification. Default is NULL. |
lloq |
Number or NULL indicating lower limit of quantification. Default is NULL. |
log_y |
Boolean indicting whether y-axis should be shown as logarithmic. Default is FALSE. |
log_y_min |
minimal value when using log_y argument. Default is 1e-3. |
xlab |
label for x axis |
ylab |
label for y axis |
title |
title |
smooth |
"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE. |
vpc_theme |
theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme() |
facet |
either "wrap", "columns", or "rows" |
scales |
either "fixed" (default), "free_y", "free_x" or "free" |
labeller |
ggplot2 labeller function to be passed to underlying ggplot object |
vpcdb |
Boolean whether to return the underlying vpcdb rather than the plot |
verbose |
show debugging information (TRUE or FALSE) |
... |
Args sent to |
seed |
an object specifying if and how the random number generator should be initialized |
idv |
Name of independent variable. For |
cens |
is a boolean to show if this is a censoring plot or
not. When |
Simulated dataset (invisibly)
Matthew L. Fidler
one.cmt <- function() { ini({ tka <- 0.45; label("Ka") tcl <- log(c(0, 2.7, 100)); label("Cl") tv <- 3.45; label("V") eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7; label("Additive residual error") }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) linCmt() ~ add(add.sd) }) } fit <- nlmixr2est::nlmixr( one.cmt, data = nlmixr2data::theo_sd, est = "saem", control = list(print = 0) ) vpcPlot(fit)
one.cmt <- function() { ini({ tka <- 0.45; label("Ka") tcl <- log(c(0, 2.7, 100)); label("Cl") tv <- 3.45; label("V") eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7; label("Additive residual error") }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) linCmt() ~ add(add.sd) }) } fit <- nlmixr2est::nlmixr( one.cmt, data = nlmixr2data::theo_sd, est = "saem", control = list(print = 0) ) vpcPlot(fit)